
RATIONAL POINTS ON CURVES

J. STEFFEN MÜLLER

Abstract. These are notes for the first three lectures of a course at the Summer
School Computational Methods in Number Theory in July 2019 in Bristol. Please let
me know about typos or mathematical errors (unfortunately, there will be no extra
credit). Some exercises and many useful comments were provided by Stevan Gajovic.
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1. First lecture

1.1. Introduction.

Throughout these notes X/Q denotes a nice curve, where nice means smooth, projective
and geometrically integral. We denote its genus by g.

The main objective of these notes is to discuss various attempts to solve

Problem 1.1. Compute X(Q).
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2 J. STEFFEN MÜLLER

We will focus on computational methods. Many of these are implemented in the com-
puter algebra system Magma [5] and we briefly indicate the relevant Magma-commands
in the notes. If you don’t have access to Magma, you can use the online calculator at
http://magma.maths.usyd.edu.au/calc/.

Much of the functionality for genus 0 and 1 is also implemented in Sage [50] and in
Pari/Gp [58]. I encourage the reader to experiment with all of these!

We will assume throughout that X is given by explicit equations with integral coeffi-
cients. To make Problem 1.1 well-defined, we first need to examine the structure of
X(Q). We either have X(Q) = ∅, which is possible for every g, or we are in one of the
following situations:

g = 0: There is an isomorphism X ∼=Q P1
Q.

g = 1: By Mordell’s theorem, fixing any P0 ∈ X(Q), we can endow X(Q) with the
structure of a finitely generated abelian group with unit element P0.

g ≥ 2: By Faltings’ Theorem, X(Q) is finite.

Therefore, computing X(Q) means

(I) deciding whether X(Q) is empty;
(II) if X(Q) 6= ∅,
g = 0: parametrizing X(Q),
g = 1: finding generators of X(Q),
g ≥ 2: enumerating X(Q).

Today, we are mostly concerned with (I). More precisely, we will discuss methods to
show that X(Q) = ∅ – provided that this is indeed the case.

We start with a trivial, yet quite useful observation: If X(K) = ∅ for some field
extension K ⊃ Q, then X(Q) = ∅. For instance, we can consider completions K of Q.

Definition 1.2. We call X everywhere locally soluble (or ELS) if X(R) 6= ∅ and if
X(Qp) 6= ∅ for all prime numbers p.

It is obvious that X(Q) can only be non-empty if X is ELS.

1.2. Checking local solubility.

We now discuss how to test whether X is ELS. Checking whether X(R) is empty is not
difficult. But since there are infinitely many prime numbers p, we must first show that
checking local solubility everywhere is a finite problem. For a prime number p, the idea
is to first check whether X̄(Fp) = ∅, where we write X̄ for the reduction of X modulo
p. If this is the case, then of course X(Qp) is also empty. If not, then we try to lift
points from X̄(Fp) to X(Qp).

Lemma 1.3. Let P̄ ∈ X̄(Fp) be a smooth point. Then P̄ lifts to a point P ∈ X(Qp).

Proof. See the corresponding exercise in John Cremona’s course. �

Hence X has p-adic points for every p such that X̄ has smooth Fp-points. Combining
this observation with the Hasse-Weil inequality

|#X̄(Fp)− (p+ 1)| ≤ 2g
√
p

for primes p of good reduction for X, we deduce that we only need to check finitely
many primes.

Corollary 1.4. Let p > 4g2 be a prime of good reduction for X. Then X(Qp) 6= ∅.

http://magma.maths.usyd.edu.au/calc/
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It remains to deal with primes not covered by the above. First suppose that g = 0.
Via a Riemann-Roch computation, we can assume that X is a conic, given by a ternary
quadratic form Q ∈ Z[x, y, z] with discriminant disc(Q) 6= 0.

Exercise 1.1. In this exercise we prove a criterion to check whether X is ELS.

(a) Show that we may assume Q = ax2 + by2 + cz2 with a, b, c pairwise coprime,
squarefree integers such that a, b > 0, c < 0.

(b) Show that X(Qp) 6= ∅ for p - abc.
(c) Show that X is ELS if and only if the system

x2
1 ≡ −bc (mod a) , x2

2 ≡ −ac (mod b) , x2
3 ≡ −ab (mod c)

has a solution (x1, x2, x3) 6= 0. (Hint: Consider odd finite primes p | abc. Then
use the product formula for the Hilbert symbol.)

Now suppose that g ≥ 1 and that p is a prime number not covered by Lemma 1.3. This
means that X̄(Fp) is nonempty, but only consists of singular points. Roughly speaking,
we can proceed as follows: We first choose a model X/Zp of XQp ; let Xp denote its

special fiber. Then, for all P̄ ∈ Xp(Fp), we “zoom in” at P̄ and replace X by the
resulting new model (for instance, we can blow up X in P̄ ). We then check if this new
X satisfies X (Zp) = ∅. If we can show this, then we get that X(Qp) = X (Zp) = ∅.
If not, we repeat until we find a model such that either X (Zp) = ∅ or Xp(Fp) contains
smooth points. One can show that this process has to lead to a regular model X after
finitely many steps, so we can decide whether X(Qp) = ∅ after finitely many steps. See
Exercise 1.3 for the case where X is hyperelliptic and p 6= 2.

Therefore there is an effective algorithm to check whether any nice X/Q is ELS, and this
also turns out to be very efficient in practice. In Magma, one can check local solubility at
a prime p via IsLocallySolvable(X, p). If X has an affine equation yn = f(x), then
one can use HasPointsEverywhereLocally(f,n) to check whether X is ELS. If X is a
conic or a model of a genus 1 curve, then there is the command IsLocallySolvable(X).

Now it is natural to wonder whether checking ELS always suffices in order to show that
a curve has no rational points.

Definition 1.5. We say that a class of nice curves satisfies the Hasse principle (or
local-to-global principle), if every curve in this class has a rational point if and only if it
is ELS.

Theorem 1.6. (Legendre) Curves of genus 0 satisfy the Hasse principle.

But as you saw in Céline Maistret’s lectures, the class of curves of genus 1 does not
satisfy the Hasse principle. For instance, if E/Q is an elliptic curve such that X(E/Q)
is nontrivial, then E has twists X/Q which do not satisfy the Hasse principle.

In fact, one expects that most nice curves of a fixed positive genus are ELS, yet have
no rational points. One can make this precise in terms of densities, see John Cremona’s
lectures. For instance, one expects the density of nice curves of fixed genus g without a
rational point to approach 1 as g increases, but the density of nice curves of fixed genus
g which are ELS is always positive (it is about 0.85 for g = 2). Hence we need to look
for other methods to show that a curve has no rational points.

1.3. Descent and covering collections.

The idea of descent is, roughly speaking, to compute the rational points on coverings of
X, rather than on X itself. We assume throughout that g > 0, and we start with an
instructive
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Example 1.7. Suppose that X is hyperelliptic, given by a model X : y2 = f(x), where
f factors as f = f1f2, with f1, f2 ∈ Z[x] coprime, not constant and not both of odd
degree. Consider the curve Y/Q defined in P3 by

Y : y2
1 = f1(x), y2

2 = f2(x).

Then the map sending (x, y1, y2) ∈ Y to (x, y1y2) ∈ X defines an unramified covering
π : Y → X. Of course, not every rational point on X might lift to a rational point on
Y . However, every rational point lifts to a rational point on one of finitely many twists
of Y ! More precisely, for a squarefree integer d the curve

Yd : dy2
1 = f1(x), dy2

2 = f2(x)

defines a covering πd : Yd → X, given by

(x, y1, y2) 7→ (x, dy1y2).

Lemma 1.8. There is a finite and explicitly computable set S of squarefree integers such
that

X(Q) =
⋃
d∈S

πd(Yd(Q)).

Proof. We only consider affine points (x, y) ∈ X(Q). There is a unique squarefree d ∈ Z
such that f1(x) = dy2

1 and f2(x) = dy2
2, with y1 and y2 rational numbers. The result

follows from the following exercise. �

Exercise 1.2. Let d be a squarefree integer and let p | d be a prime number. Show that
if Yd(Qp) 6= ∅, then p divides the resultant of f1 and f2 or, in case one of the fi has odd
degree, say f1, p divides the leading coefficient of f2.

Definition 1.9. The Selmer set of the covering π : Y → X is defined by

Sel(π) := {d ∈ Z squarefree : Yd is ELS}.

Then Sel(π) ⊂ S is finite and explicitly computable and we have X(Q) = ∅ if Sel(π) is
empty.

We can generalize the previous example to nice curves X/Q. The idea is to cover X
by finitely many twists of a fixed covering such that every rational point on X comes
from a rational points on one of these coverings. If we can show that the latter have no
rational points, then we have shown X(Q) = ∅.

Theorem 1.10. Let π : Y → X be an unramified and geometrically Galois covering,
which is given explicitly. Then there is a finite and explicitly computable subset Sel(π) ⊂
H1(GQ,Aut(π)) such that we have

X(Q) =
⋃

ξ∈Sel(π)

πξ(Yξ(Q)).

This is essentially the theorem of Chevalley-Weil [14]. Here a twist Y → X is geomet-
rically Galois if Q̄(Y )/Q̄(X) is Galois. The twists of π : Y → X as in the theorem are
parametrized by H1(GQ,Aut(π)). For any ξ ∈ H1(GQ,Aut(π)) we have a commutative
diagram

Yξ
∼=Q̄ //

πξ
��

Y

π

��
X =

// X

We call the collection (Yξ)ξ∈Sel(π) as in the theorem a covering collection of X.
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Remark 1.11. The covering π in Example 1.7 has Aut(π) ∼= Z/2Z, and the set of square-
free integers forms a system of representatives of H1(GQ,Z/2Z) ∼= Q∗/(Q∗)2.

The correspondence between twists of coverings and Galois cohomology is similar to the
correspondence between twists of an elliptic curve E/Q and the Galois cohomology set
H1(GQ, Isom(E)) discussed in Céline Maistret’s lectures. There, a special kind of twist
was discussed; namely, a principal homogeneous space Yξ for ξ ∈ H1(GQ, E[n]), where
n ≥ 2. We call such a twist πξ : Yξ → X an n-covering of E. More generally, for a
nice curve X/Q of genus 1 which is a principal homogeneous space for E, we define an
n-covering of X to be a covering π : Y → X which gives rise to a commutative diagram

Jac(X)
∼=Q̄ //

π∗

��

E

[n]

��
Jac(Y ) ∼=Q̄

// E.

We define the n-Selmer set of X as the set Seln(X) of all n-coverings of X that are ELS.

It is often possible to compute Seln(X) in practice. For instance, when X arises via
an m-descent on its Jacobian E, i.e. as an element of Selm(E/Q) for some m ≥ 2,
this is essentially equivalent to a second descent on E. In this case there are practical
algorithms to compute Seln(X) when

• m = n = 2 (Cassels [12], Merriman-Siksek-Smart [39], Womack [62])
• m = n = 3 (Creutz [26])
• m = 4, n = 2 (Stamminger [49])
• mn = 6, 12 (Fisher [27])

All of these algorithms (and others) are implemented in Magma. They can be accessed
via *Descent, where ∗ ∈ {Two,Three,Four,Five,Six,Eight,Nine,Twelve}. See [20,
21, 22] for further information about descent on elliptic curves.

The construction above extends to general g ≥ 1 in the following way. Letting J/Q
denote the Jacobian variety of X, an n-covering of J is a covering V → J which is
isomorphic to the multiplication-by-n map [n] : J → J over Q̄. Fix an embedding
ι : X → J defined over Q, via a rational divisor class on X of degree 1. Then we define
an n-covering π : Y → X to be the pullback via ι of an n-covering V → J , making the
diagram

Y //

π
��

V
∼=Q̄ //

��

J

[n]��
X ι

// J

commute. As above, the n-Selmer set Seln(X) is defined as the set of ELS n-coverings
of X.

Theorem 1.12. Let g ≥ 1 and n ≥ 2, and suppose that we have explicit equations of
J . Then Seln(X) is finite and explicitly computable, and we have

X(Q) =
⋃

ξ∈Seln(X)

πξ(Yξ(Q)).

An efficient algorithm for computing Seln(X) for curves of genus > 1 is only known for
hyperelliptic curves and n = 2, see [9]. The idea is to not compute a covering collection
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directly, but to replace Sel2(X) with a related set, the fake 2-Selmer set, which can be
computed via algebraic number theory and local computations. The Magma-command
for this is TwoCoverDescent(X).

Remark 1.13. One can show that all geometrically Galois unramified coverings with
abelian Galois group extend to n-coverings.

Remark 1.14. We can also use covering collections to compute X(Q) when there are
rational points. See Exercise 1.5 below.

1.4. Further exercises.

Exercise 1.3. (Formulated by Stevan Gajovic) Let X : y2 = f(x) be a nice hyperelliptic
curve, with f ∈ Z[x]. We want to describe an algorithm that checks whether X(Qp) = ∅
for p 6= 2, a prime number. Recall that we may suppose that X̄(Fp) 6= ∅ and that all
points in X̄(Fp) are singular.

(a) Conclude that such a point is of the form P̄ = (x0, 0), for some x0 ∈ {0, 1, . . . , p−
1}. Therefore p | f(x0) and p | f ′(x0).

(b) If p2 - f(x0), prove that the point P̄ does not lift to a point in X(Qp).
(c) Now suppose that p2 | f(x0). Prove that

f1(x) :=
f(x0 + px)

p2
∈ Z[x].

(d) Let X1 be the hyperelliptic curve defined by y2 = f1(x). Prove that the lifts of
P̄ are in bijective correspondence with points in X1(Qp).

(e) We continue with X1. As before, if X̄1(Fp) = ∅ or X̄1(Fp) contains a smooth
point, then we are done. The remaining case is again when there is a singular
point P1 = (x1, 0) ∈ X̄1(Fp). Imitate the steps (a)-(c). Conclude that either we
can decide in finitely many steps whether P̄ lifts to a point in X(Qp) or we can
construct an infinite sequence of curves Xn : y2 = fn(x), where

fn(x) :=
fn−1(xn−1 + px)

p2
∈ Z[x]

with singular points Pn−1 = (xn−1, 0) ∈ X̄n−1(Fp).
(f) Show that if the process does not terminate, then the resulting infinite sequence

of curves leads to a singular point P ∈ X(Qp) (Hint: Guess the coordinates of
P ! Find the sequence (obviously) converging to x(P ) and use this to prove that
P is singular).

(g) Conclude that the above leads to an algorithm which is guaranteed to decide
whether X(Qp) = ∅ in finitely many steps.

Exercise 1.4. Show that the hyperelliptic curves given by the following affine equations
have no rational points.

(a) y2 = −x6 − 3x5 + 4x4 + 2x3 + 4x2 − 3x− 1
(b) y2 = (−x2 − x+ 1)(x4 + x3 + x2 + x+ 2). Also show that this curve is ELS.

Exercise 1.5. Let X : y2 = (x2 + 1)(x4 + 1).

(a) Show that Sel(π) ⊂ {1, 2}, where π is as in Example 1.7.
(b) For squarefree d ∈ Z, let Cd be the hyperelliptic curve defined by dy2 = x4 + 1.

Show that for both d = 1 and d = 2, there are at least four rational points on
Cd. In fact there are exactly four rational points on both C1 and C2 – you may
assume this (or try to verify it, for instance, using Magma).

(c) Use (b) to compute Yd(Q) for d = 1, 2 and to compute X(Q).
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2. Second Lecture

Now suppose that X/Q is a nice curve which has a rational point.

2.1. Curves of genus 0.

Suppose that g = 0. As discussed in the first lecture, we may assume that X : Q = 0 is
a smooth conic with integral ternary quadric Q. If we know a rational point P0 ∈ X(Q),
then we can explicitly construct an isomorphism X ∼= P1 defined over Q by projecting
from P0. This solves problem (II) from the first lecture for X.

Example 2.1. Consider the unit circle X : x2+y2 = 1 and the point P0 = (−1, 0) ∈ X(Q).
A non-vertical line through P0 with rational slope t intersects X in exactly one additional

point P t =
(

1−t2
1+t2

, 2t
1+t2

)
∈ X(Q). Also taking the vertical line through P0 into account,

we obtain a parametrization of X(Q).

There are various methods to find a rational point P0. The basic idea of most of them
is to repeatedly replace Q by a “simpler” quadric Q′ such that Q has a nontrivial zero if
and only if Q′ does. The most efficient algorithm (to my knowledge) is due to Simon [48];
the idea (for diagonal quadrics) goes back to Gauss.

(i) (Minimization) For a prime p | disc(Q), replace Q by a quadric whose discriminant
is not divisible by p. Repeat prime-by-prime until | disc(Q)| = 1.

(ii) (Reduction) Reduce the coefficients of Q until we get a Q for which we can easily
read off a solution (e.g. the one in Example 2.1).

For the second step, Simon uses a version of the LLL-algorithm for indefinite quadratic
form. It turns out that in practice the passage to a diagonal form, which you applied in
Exercise 1.1, can have disastrous effects on the size of the discriminant (which we have
to factor), so it is to be avoided if possible.

Simon’s algorithm is implemented in Magma. You can turn a nice curve X/Q of genus
0 into a conic using Conic(X). If X/Q is a smooth conic, use HasRationalPoint(X)

to find a rational point (if there is one) and Parametrization(X) to write down an
isomorphism to P1 defined over Q.

The paper [24] by Cremona and Rusin contains alternative efficient methods.

2.2. From curves of genus 1 to elliptic curves.

Let X/Q be a nice curve of genus 1. The given model of X could, for instance, be one
of the following:

(i) X : y2 = f(x), where f has degree 4 and is squarefree
(ii) a plane cubic in P2

(iii) X : S1 ∩ S2, where S1 and S2 are quadric surfaces in P3.

Such models arise from n-descent (n = 2, 3, 4) on the Jacobian E ofX, which is an elliptic
curve. Note that writing down the model (i) in the 2-descent process (as described, for
instance, in [18]) requires the parametrization of conics.

We first need to find a rational point. For models (i) we can use a quadratic sieve
strategy as implemented in Stoll’s program j-points. Note that instead of searching
on X itself, we can also search on coverings π : Y → X as discussed in §1.3. This can
be advantageous, because the map π increases the “size” of a rational point.

Once we have found a rational point P0 ∈ X(Q), we can use Riemann-Roch to construct
an isomorphism ψ : X → E over Q, where E is the Jacobian of X and is given by
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an integral Weierstrass equation, and such that ψ maps P0 to O := (0 : 1 : 0) ∈
X(Q). In Magma, use EllipticCurve(X) (which only works for special configurations)
or EllipticCurve(X,P0).

Now the abelian groups (X(Q), P0) and (E(Q), O) are isomorphic and solving Problem
(II) from the first lecture for X reduces to computing generators of the finitely generated
abelian group

(E(Q), O) ∼= Zr ⊕ T , r ≥ 0, #T <∞.
The computation of generators of the torsion subgroup E(Q)tors

∼= T is usually not
difficult. We get an upper bound coming from applying the following observation with
several primes.

Lemma 2.2. Let p be a prime of good reduction for E. Then there is an injection

E(Qp)tors ↪→ Ē(Fp).

To complement this, we can simply search for torsion points. Alternatively (or in addi-
tion), we can use the theorem of Nagell and Lutz, which says that an affine torsion point
(x, y) ∈ E(Q) of order 6= 2 satisfies x, y ∈ Z and y2 | ∆E . Use TorsionSubgroup(E) in
Magma.

Recall from Céline Maistret’s lectures that no effective algorithm is known for the compu-
tation of the Mordell-Weil rank r. In practice, we can use descent on E (e.g an n-descent
or a descent by isogeny) to compute a Selmer group, leading to an upper bound on r. But
we have to complement this with a lower bound, which we find by searching for points
on E or on suitable coverings (e.g. from the descent we used for the upper bound). We
can show that points in E(Q) are independent modulo torsion using reduction modulo
suitable primes of good reduction, see [19] (use IsLinearlyIndependent(S) to check
independence for a (Magma-) sequence S of points in E(Q)). Alternatively, we can use
the theory of heights discussed below. Note that even for elliptic curves with fairly small
coefficients, the “smallest” nontorsion point can be very large.

Remark 2.3. When the analytic rank of E/Q is ≤ 1, then it is equal to r by the work
of Gross-Zagier [29] and Kolyvagin [36], and so we can show this via an L-function
computation. For r = 1, we can construct a nontorsion point in E(Q) from a Heegner
point [29].

In Magma, you can try to compute the rank using Rank(E). If this doesn’t seem to
work, use RankBounds(E) or apply one of the descent implementations mentioned above
directly.

It remains to solve the following:

Problem 2.4. Suppose we are given Q1, . . . , Qr ∈ E(Q) which are independent mod-
ulo torsion. Find P1, . . . , Pr ∈ E(Q) such their classes in Λ := E(Q)/E(Q)tors are
generators.

In the remainder of today’s lecture, we will discuss this in detail.

2.3. Heights.

We mentioned the “size” of the coordinates of a rational point on a genus 1 curve above.
The notion of size can be made precise using height functions.

Definition 2.5. Let N ≥ 1 and P = (x0 : . . . : xN ) ∈ PN (Q) such that x0, . . . , xN ∈ Z
and gcdi=0,...,N (xi) = 1. Then the height of P is defined by

h(P ) := log max
i
{|xi|}.
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Note that the height of a rational point essentially measures the number of digits it
takes to write down the point. We now define a height function on our elliptic curve
E/Q.

Definition 2.6. The naive height of an affine point P = (x, y) ∈ E(Q) is h(P ) := h(x).
We also set h(O) := 0.

Theorem 2.7. The naive height has the following properties:

(1) {P ∈ E(Q) : h(P ) ≤ B} is finite for all B ∈ R≥0 (Northcott property).
(2) h is quadratic up to a bounded function; i.e. there is a constant C > 0 such that

h(2P )− 4h(P ) < C for all P ∈ E(Q).
(3) (Tate) For all P ∈ E(Q), the canonical height (or Néron-Tate height)

ĥ(P ) := lim
n→∞

4−nh(2nP ) ∈ R≥0

exists.
(4) h− ĥ is bounded.

(5) ĥ(P ) = 0 if and only if P has finite order.

(6) {P ∈ E(Q) : ĥ(P ) ≤ B} is finite for all B ∈ R≥0.

(7) ĥ extends to a positive definite quadratic form on the real vector space E(Q)⊗Z
R ∼= Rr.

The proof of Mordell’s theorem follows from Theorem 2.7, combined with finiteness of
E(Q)/nE(Q) for any n > 1 of your choice and the descent lemma:

Lemma 2.8. Suppose that G is an abelian group such that

(1) G/nG is finite for some n ≥ 2.
(2) There is a quadratic form

q : G → R≥0

such that {g ∈ G : q(g) ≤ B} is finite for all B ∈ R≥0.

Then G is finitely generated.

Exercise 2.1.

(a) Prove the descent lemma.
(b) Show that there is an algorithm to compute generators of E(Q) if we have

representatives of E(Q)/nE(Q) for some n ≥ 2 and if we can

(i) compute ĥ(P ) for given P ∈ E(Q) and

(ii) enumerate {P ∈ E(Q) : ĥ(P ) ≤ B} for given B ∈ R≥0.

For convenience, we recall that if G is an abelian group, a function q : G → R is a
quadratic form if it satisfies the following conditions:

• q(g) = q(−g) for all g ∈ G.
• The pairing G×G→ R which maps (g, h) to q(g + h)− q(g)− q(h) is bilinear.

Your proof of (a) will probably lead you to a solution of (b) which is due to Zagier. In
practice this is often good enough to solve Problem 2.4, for instance when Q1, . . . , Qr
were obtained from an n-descent. In fact all known methods to solve Problem 2.4 require
algorithms for (i) and (ii); the most efficient approach is due to Siksek [46] and is based
on viewing the subgroup Λ′ ≤ Λ generated by Q1, . . . , Qr as a finite index sublattice
of the lattice Λ in the Euclidean vector space (E(Q) ⊗Z R, ĥ) and saturating Λ′ by
finding the primes dividing the index [Λ′ : Λ] based on reduction modulo primes of
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good reduction (and enlarging Λ′, if necessary). An alternative algorithm based on the
covering radius of Λ′ is due to Stoll [53].

It turns out that computing ĥ from its definition is not a good idea – the convergence is
only linear, but the size of the coefficients increases quadratically by Theorem 2.7. Note
that we can solve (ii) if we can

• enumerate {P ∈ E(Q) : h(P ) ≤ B} for given B ∈ R≥0 and

• bound h− ĥ from above.

The first of these can be solved using Stoll’s program j-points (see [51]); it is based on
a sieving technique.

The main idea to compute ĥ and to bound h − ĥ is to decompose the difference h − ĥ
into local summands.

Theorem 2.9. (Néron [43]) There is a local decomposition

h− ĥ =
∑

p prime

Ψp + Ψ∞

such that

(i) Ψv : E(Qv) → R is v-adically continuous and bounded for every place v of Q;
(ii) Ψp(Q)/ log(p) ∈ Q≥0 for p finite and Q ∈ E(Qp);
(iii) Ψ∞ is essentially − log |σ|, where σ is the Weierstrass sigma-function.
(iv) If E is given by a Weierstrass equation which is minimal at p, then Ψp factors

through E(Qp)/E0(Qp) for p finite.

In fact, Néron defined ĥ using a local decomposition, whereas the limit definition in
Theorem 2.7 is due to Tate. Using Theorem 2.9, the computation of ĥ reduces to the
computation of all Ψv (since h is trivial to compute), and bounding h− ĥ can be done
by bounding all Ψv. Because of (iv), only finitely many places have to be considered.

The following exercise walks you through an explicit construction of Ψv. Parts (a) and
(b) are a bit tedious, so you might want to start with the other parts.

Exercise 2.2. It is easy to see that if the given Weierstrass equation is of the form
y2 = x3 + ax+ b and if P = (xP , yP ) ∈ E(Q) is not 2-torsion, then 2P is an affine point
with x-coordinate g(P )/f(P ), where

g(P ) = x4
P − 2ax2

P − 8bxP + a2,

f(P ) = 4x3
P + 4axP + 4b.

For a place v of Q and P ∈ E(Qv) \ {O}, define

ρv(P ) :=
max{|f(P )|v, |g(P )|v}

max{|xP |4v, 1}
∈ Q,

where the absolute values | · |v are normalized to satisfy the product formula. We also
set ρv(O) := 1.

(a) Show that ρv is continuous (with respect to the v-adic topology) and bounded.
(b) Show that Φv := log ρv is also continuous and bounded.
(c) Show that the function defined by

Ψv(Q) := −
∞∑
n=0

4−n−1Φv(2
nQ)

is the unique bounded and continuous function Ψv : E(Qv) → R such that
Φv(P ) = Ψv(2P )− 4Ψv(P ).
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Now let P ∈ E(Q). Show that we have

(d) Φv(P ) 6= 0 only for finitely many v;
(e) h(2P )− 4h(P ) =

∑
v Φv(P );

(f) h(P )− ĥ(P ) =
∑

v Ψv(P ).

Here the v-adic topology on E(Qv) is defined by the basis of open sets

{(x, y) ∈ E(Qv) : |x− x0|v < ε and |y − y0|v < ε}
for all (x0, y0) ∈ E(Qv) and for all ε > 0, and

{(x, y) ∈ E(Qv) : |x|v > ε} ∪ {O},
for all ε > 0.

Remark 2.10. If we define the canonical height by h−
∑

v Ψv, then most of its properties
are simple consequences of the properties of h and Ψv.

Remark 2.11. Néron constructed Ψp for primes p in terms of intersection theory on a
regular model of E over Zp, see [43].

Example 2.12. Suppose that E has multiplicative reduction at p and vp(∆E) = n ≥ 1.
Then the special fiber of the minimal regular model is an n-gon. Suppose that E is given
by a minimal Weierstrass model, and let Γ0 be the component containing the image of
O (i.e. Γ0(Fp) is the reduction of the subgroup E0(Qp) of nonsingular points). Order
its components Γ0, . . . ,Γn−1 consecutively. Then we have

Ψp(Γi) =
i(n− i)

n
log p.

Note that if we can bound Φv, then we can bound Ψv using the geometric series. But
it turns out that we can often do much better: For finite v = p, Cremona, Prickett and
Siksek show how to read off optimal bounds for Ψ from the given equation of E [23].
They also discuss how to bound Ψ∞; alternative approaches can be found in Bruin’s
article [11] and in [40].

Now let P ∈ E(Q). The most efficient way to compute Ψ∞ is due to Bost and Mestre [6];
it is based on an ingenious use of the arithmetic-geometric mean, which is quadratically
convergent. Alternative approaches can be found in [15, §7.5.2]. Theorem 2.9 (iv) leads
to a very simple and efficient algorithm to compute Ψp for finite primes p found by
Silverman [47]. However, it first requires integer factorisation to determine those primes
p for which Ψp(P ) 6= 0 is possible. Alternatively, if we can bound Φp, then we can
approximate Ψp to any desired precision via Exercise 2.2; using Theorem 2.9 (ii) we can
even compute it exactly using a sufficiently good approximation and continued fractions.
It is possible to turn this idea into an algorithm to compute

∑
p Ψp(p) which does not

require any integer factorization, see [41].

The naive height of a point P ∈ E(Q) can be computed using NaiveHeight(P) in
Magma, whereas Height(P) is an abbreviation for CanonicalHeight(P). The command
Points(E : Bound := B) lists all points of naive height up to exp(B); it also works for
other curves.

If you want to compute generators of E(Q) in one go, use Generators(E). Note that this
is only the tip of the iceberg; Magma has extensive functionality for elliptic curves – so does
Sage. One final command to often make life much easier: For various applications, you
want to replace E by MinimalModel(E). In general, this will not be a short Weierstrass
equation.
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2.4. Abelian varieties.

The definition of h can be generalized to abelian varieties A/Q by setting h(P ) :=
h(κ(P )), where the image of the map κ : A→ P2g−1 is a model of the Kummer variety
A/{±1}. Theorem 2.7 and Theorem 2.9 remain true in this more general setting (and
even over number fields), and we can solve Problem 2.4 for A if we can solve (a) and
(b).

There are practical algorithms to compute ĥ for Jacobians of hyperelliptic curves of
genus 2 [28, 53, 42] and genus 3 [56], as well as an algorithm for general Jacobians based

on arithmetic intersection theory [61]. Bounding h− ĥ is more difficult and, at present,
only possible in practice for hyperelliptic curves of genus at most 3 ([53, 42, 56]. In
Magma, you can at present compute the canonical height for Jacobians of hyperelliptic
curves; the computation of generators of J(Q) is possible for curves of genus 2, but you
have to combine several algorithms yourself. This will be expanded in the near future.

Using the canonical height, we can define a quantity appearing in the conjecture of Birch
and Swinnerton-Dyer, see Céline Maistret’s lectures. Set

〈P,Q〉 :=
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

for P,Q ∈ A(Q).

Definition 2.13. Let P1, . . . , Pr ∈ A(Q) such that their classes in A(Q)/A(Q)tors are
generators. Then

Reg(A/Q) := det(〈Pi, Pj〉)1≤i,j≤r
is called the regulator of A/Q.
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3. Third Lecture

Let X/Q denote a nice curve of genus g ≥ 2. Recall from the first lecture that when
X(Q) = ∅, then this can sometimes be proved by showing that X(Qp) = ∅ for some
prime number p. In today’s lecture, we will see that we can sometimes compute X(Q)
as a subset of X(Qp), even if X(Q) is non-empty. Most of this lecture is heavily inspired
by the excellent survey paper [38] written by McCallum and Poonen.

3.1. Chabauty.

We fix a prime number p which, for technical reasons, we assume to be a prime of good
reduction for X. We also assume that X(Q) 6= ∅ and we fix a point b ∈ X(Q), giving
rise to an Abel-Jacobi map

ι : X → J , P 7→ [P − b]

which maps X(Q) into J(Q).

Remark 3.1. If we assume Vojta’s conjecture (equivalent to a generalized version of the
abc-conjecture), then we expect that the rational points on X have reasonably small
height compared to the coefficients of the given equation of X. See [30] for details.
Hence the main issue in the computation of X(Q) is not to find the rational points –
typically it is easy to find a subset X(Q)known ⊂ X(Q) such that we suspect equality.
In Magma you can do this using RationalPoints(X : Bound := B); But proving that
equality indeed holds is a quite different matter.

The p-adic points on J have the structure of a p-adic Lie group whose Lie algebra
is H0(JQp ,Ω

1)∗, which is isomorphic to H0(XQp ,Ω
1)∗ via ι; we will identify these two

spaces. Therefore there is a continuous homomorphism

log : J(Qp)→ H0(JQp ,Ω
1)∗ → H0(XQp ,Ω

1)∗

with kernel J(Qp)tors.

It turns out that for c ∈ J(Qp) sufficiently close to 0 and ω ∈ H0(XQp ,Ω
1)∗, we can

compute log(c)(ω) by formally integrating a formal power series expansion of ω in terms
of local coordinates at 0. See [38, §4.1] and [7, §III.7.6] for details.

First recall that by the Mordell-Weil theorem, we have

J(Q) ∼= Zr ⊕ T,

where r ≥ 0 and T is finite. It is not hard to see that the closure of J(Q) in J(Qp) has
dimension ≤ r. Since dimQp H0(XQp ,Ω

1) = g, we find:

Lemma 3.2. (Chabauty [13]) If r < g, then there is some ω0 ∈ H0(XQp ,Ω
1) \ {0} such

that log(J(Q))(ω0) = 0.

We call ω0 an annihilating differential. Lemma 3.2 will be used to compute X(Q) when
r < g. Consider the commutative diagram

X(Q) X(Qp)

J(Q) J(Qp) H0(XQp ,Ω
1)∗

ι ι

log

The idea is to pull log back to X(Qp).
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Definition 3.3. For P,Q ∈ X(Qp) and ω ∈ H0(XQp ,Ω
1), set∫ Q

P
ω := log([Q− P ])(ω)

Suppose that the reductions P̄ , Q̄ ∈ X̄(Fp) of P and Q are equal. Fix a local parameter
at P , that is, a uniformizer t ∈ Qp(X) at P which reduces to a uniformizer at P̄ . Suppose
that ω reduces to a nonzero differential on X̄. Then it turns out that around P we can
expand ω = w(t)dt, where w ∈ Zp[[t]] converges on the residue disk

DP̄ := {R ∈ X(Qp) : R̄ = P̄}.
The uniformizer t defines an analytic isomorphism DP̄

∼= pZp. We then have

(3.1)

∫ Q

P
ω =

∫ t(Q)

0
w(t)dt

Such integrals are called tiny integrals.

3.2. Coleman’s bound.

If r < g and if P and Q are both rational points, then
∫ Q
P ω0 = 0 for ω0 as in Lemma 3.2.

So if we fix P , then we are interested in the zeroes of this integral as a function in Q.
We first prove a general result about zeroes of p-adic power series.

Lemma 3.4. Let ` ∈ Qp[[t]] such that `′ = w ∈ Zp[[t]]. Let ν denote the order of vanishing
of the reduction w̄ ∈ Fp[[t]] at t̄ = 0. Then, if ν ≤ p− 2, we have

#{t ∈ pZp : `(t) = 0} ≤ ν + 1.

So now suppose that r < g. Fix ω0 as in Lemma 3.2 and assume it is scaled so that its
reduction ω̄0 is defined and nonzero. For P̄ ∈ X̄(Fp) we set νP̄ := ordP̄ ω̄0.

Corollary 3.5. If νP̄ < p− 2, then

#(DP̄ ∩X(Q)) ≤ νP̄ + 1.

Proof. We may assume that there is some P ∈ DP̄ ∩ X(Q). Expand ω0 into w(t)dt
around P , where t is a local parameter at P and w(t) ∈ Zp[[t]]. Then, for every Q ∈ DP̄ ,
we have ∫ Q

P
ω0 =

∫ t(Q)

0
w(t)dt = `(t(Q)),

where `(t) ∈ Qp[[t]] satisfies the conditions of Lemma 3.4. Hence the result follows from
Lemma 3.2. �

The following result gives a quantitative version of an earlier theorem of Chabauty,
stating that when r < g, the set of rational points on X is finite.

Theorem 3.6. (Coleman [16]) Let p > 2g be a prime of good reduction for a nice curve
X/Q of genus g > 1 whose Jacobian has Mordell-Weil rank r < g. Then

#X(Q) ≤ #X̄(Fp) + 2g − 2.

Proof. For P̄ ∈ X̄(Fp), Riemann-Roch implies

νP̄ ≤
∑

Q̄∈X̄(Fp)

νQ̄ = deg(div(ω̄0)) = 2g − 2 < p− 2.

Now apply Corollary 3.5 and sum over all P̄ ∈ X̄(Fp). �
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To compute X̄(Fp) in Magma, use #Points(ChangeRing(X, GF(p))). It turns out that
in practice, the bound in Theorem 3.6 is almost never sharp. Exercise 3.1 contains one
of these rare examples – it also illustrates how the problem of computing rational points
on curves can arise in rather unexpected contexts.

Remark 3.7. There are various improvements of Coleman’s bound.

(1) If r < g − 1, then #X(Q) ≤ #X̄(Fp) + 2r (Stoll [54, Corollary 6.7])
(2) One can use primes of bad reduction (Lorenzini-Tucker [37, Corollary 1.11]),

Katz, Zureick-Brown [32]).
(3) If r < g − 2, it is possible to obtain a uniform upper bound on #X(Q), i.e.

there is no dependence on p. This is due to Stoll [57] and Katz, Rabinoff and
Zureick-Brown [31].

3.3. Beyond Coleman’s bound.

Unfortunately, even the best bounds in Remark 3.7 are hardly ever sharp. To remedy
this, note that if we can compute an explicit annihilating differential ω0, and if we find
that

(3.2) #DP̄ ∩X(Q)known = νP̄ + 1 for all P̄ ∈ X̄(Fp),

then we have also shown that X(Q) = X(Q)known. This approach is implemented in
Magma for curves of genus 2; use Chabauty(P,p), where P ∈ J(Q) has infinite order.

Example 3.8. Consider the hyperelliptic curve X : y2 = f(x) := x6 − 4x4 + 8x2 − 4
of genus 2. We easily find X(Q)known := {(±1,±1),∞±} ⊂ X(Q). Using the Magma

command RankBounds(J) or a rather painful pen-and-paper 2-descent, we can show
that r = 1 and hence the results of this lecture are applicable. Since disc(f) = 216 · 112,
the curve X has good reduction at primes p 6= 2, 11. For instance, X has good reduction
at p = 3, and we have

(3.3) X̄(F3) = {(±1,±1),∞±}.

So let’s try to find νP̄ for all P̄ ∈ X̄(F3). First we need an annihilating differential.

Recall that a basis of H0(XQ3 ,Ω
1) is

dx

2y
and

xdx

2y
. One way to proceed this is to show

that

(3.4)

∫ (1,1)

(−1,−1)

dx

2y
= 0

and

(3.5)

∫ (1,1)

(−1,−1)

xdx

2y
6= 0.

Then (3.5) tells us that [(1, 1) − (−1,−1)] is not torsion in J(Q) (one can also show

this more directly, of course), and hence we can take ω0 =
dx

2y
by (3.4). This is already

scaled so that ω̄0 ∈ H0(X̄,Ω1) is nonzero.

We first determine νP̄ for P̄ = (1, 1). In this case we can take t = x− 1 and we find

ω0 = (t6 + 6t5 + 11t4 + 4t3 − t2 + 6t+ 1)−1/2dt = (1− 3t+ 14t2 + . . .)dt,

and hence νP̄ = 0. Therefore,

DP̄ ∩X(Q) = {(1, 1)} = DP̄ ∩X(Q)known.
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Via an analogous computation we can show that the same holds for all affine points
in X̄(F3). However, we have ν∞+ = 1 = ν∞− , so we cannot conclude that X(Q) =
X(Q)known yet.

In the example, we computed integrals
∫ Q
P ω between points which are not in the same

residue disks. There are essentially two ways to do this. First, there is always some
positive integer n | #J̄(Fp) such that n(Q− P ) is linearly equivalent to a divisor of the
form

∑
i(Qi − Pi) with Pi and Qi in the same residue disk for every i. We find∫ Q

P
ω =

1

n

∑
i

∫ Qi

Pi

ω.

Note that the points Pi, Qi might not be Qp-rational, but the notion of residue disks and

the construction of
∫ Qi
Pi

ω via extension into power series extends to X(Q̄p) in a Galois
equivariant way.

Another possibility is to use Coleman’s integration theory [17]. Coleman shows that
the integrals introduced above satisfy several desirable properties, including additiv-
ity in endpoints, linearity in the integrand, a fundamental theorem of calculus and a
change of variables formula with respect to a lift of Frobenius. Balakrishnan, Bradshaw
and Kedlaya [3] have shown that for hyperelliptic curves the computation of the inte-

gral
∫ Q
P ω can be reduced to computing the action of such a lift on a suitable p-adic

cohomology group, which can be done via an algorithm due to Kedlaya, see [33], and
linear algebra. This is implemented in Sage (use X.coleman_integral(omega, P, Q)).
For generalizations see Tuitman’s point counting papers [59, 60] and the recent work of
Balakrishnan-Tuitman [2]. A Magma-implementation of the latter is at https://github.
com/jtuitman/Coleman.

But there is yet another serious computational issue: We assume that r < g – so we
first have to (hope this is true and) show this! But as for elliptic curves, there is no
general algorithm for the computation of the rank (due to our insufficient knowledge
of X(J/Q)). In principle, one can still apply descent, but in practice, this is only
feasible for small genus hyperelliptic curves (see [52]) and, more generally, superelliptic
curves [45, 25] (using RankBound(J) or, for g = 2, RankBounds(J), which also computes
a lower bound), and for smooth plane quartics [8] with reasonably small coefficients.
The algorithms use algebraic number theory and completely avoid actually writing down
coverings of J .

But even if we can compute a suitable upper bound, for instance

r < dimF2 Sel2(J/Q)− dimF2 J(Q)[2] < g,

then

• this bound might not be sharp
• even if it is sharp, it be difficult to find r points in J(Q) which are independent

modulo torsion – and this is needed to find an annihilating differential ω0 and
in Lemma 3.2.

Both of these issues are addressed by Stoll in [55], where it is shown that one can apply
a variant of Chabauty’s method working directly with Sel2(J/Q).

On a side note, if r = 0, the computation of X(Q) is trivial. For curves of genus 2,
Magma can do this automatically, use Chabauty0(J) (despite the misleading name, no
Chabauty computation is involved).

https://github.com/jtuitman/Coleman
https://github.com/jtuitman/Coleman
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Let’s return to the situation where we cannot find a suitable prime p such that (3.2)
holds. If we can solve the computational problems discussed above, then we can proceed

as follows: The function ρ : X(Qp)→ Qp which maps P to
∫ P
b ω0 vanishes in X(Q). By

properties of the integral, it can be written as a convergent p-adic power series on every
residue disk, and such series only have finitely many zeroes. So if we can compute
the set Z of zeroes of ρ on every disk, then we find X(Q) among them. The only
remaining task is to show that none of the points in Z \X(Q)known are actually rational
points. This can be done using the Mordell-Weil sieve, which we will discuss in the
fourth lecture. In fact, combining Chabauty’s method with the Mordell-Weil sieve leads
to a very powerful algorithm for computing X(Q) when r < g. See [10]; a heuristic
due to Poonen [44] predicts that this should always work (in principle). The combined
algorithm is currently only implemented in Magma for curves of genus 2 having r = 1;
you can call it via Chabauty(P), where P ∈ J(Q) has infinite order.

Finally, this point of view also leads to a possible generalization when r ≥ g. Namely,
the function ρ is constructed using linear relations in the image of log |J(Q). When
r = g and J satisfies some additional properties, then one can use quadratic relations
to construct a function ρ with finitely many zeroes which vanishes in X(Q). See [4, 1]
for details. This is really only the simplest instance of a vast non-abelian extension of
Chabauty due to Kim [35, 34]. It is a major open problem to make Kim’s approach
explicit in more complicated situations.

3.4. Exercises.

Exercise 3.1. (Rational right triangles and rational isosceles triangles) We call a triangle
rational if its side lengths are rational. The goal of this problem is to give a proof of the
following result:

Theorem 3.9. (Hirakawa-Matsumura) Up to similitude, there exists a unique pair of a
rational right triangle and a rational isosceles triangle which have the same perimeter
and the same area. For the representatives of the unique pair of such triangles, we can
take the right triangle with sides of lengths (377, 135, 352) and the isosceles triangle with
sides of lengths (366, 366, 132).

(a) Let T1 be a rational right triangle, and T2 a rational isosceles triangle. Show
that we can assume the side lengths of T1 and T2 are of the form
(1) (k(1 + t2), k(1− t2), 2kt) and (l(1 + u2), l(1 + u2), 4lu) or
(2) (k(1 + t2), k(1− t2), 2kt) and (l(1 + u2), l(1 + u2), 2l(1− u2)).

for some rational numbers k, l > 0, 0 < t, u < 1. Suppose, from now on, that
T1 and T2 have the same area and perimeter. By scaling both triangles, in both
cases we can assume that l = 1, which we will do until the end of this problem.

(b) Suppose we are in case (1). Show that there is a rational number 1 < x < 2
such that

2xk2 + (−3x3 − 2x2 + 6x− 4)k + x5 = 0.

(c) Deduce that in case (1), (T1, T2) induces an affine rational point on the genus 2
curve

X1 : y2 = (3x3 + 2x2 − 6x+ 4)2 − 8x6.

(d) Use Magma’s command RankBounds to show that the Mordell-Weil rank of the
Jacobian of X1 is 1.

(e) Show that X1 has precisely 10 rational points. (Hint: Eight out of ten points
have (small) integral coordinates. However, the remaining pair of points could be
difficult to find. If you want, you can use Magma’s command RationalPoints.)
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(f) Repeat the argument for case (2). (Hint: There’s a very easy way to solve (d)
and (e).)

(g) Deduce the theorem of Hirakawa and Matsumura.

Exercise 3.2. (Due to Stevan Gajovic) Find all rational points on the hyperelliptic curve
defined by

X : y2 = (x5 + 11x4 + 64)(x6 + 11x5 + 64x+ 729).

You may want to use Magma to compute ranks, torsion subgroup(s) and numbers of
Fp-rational points.
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capacité de l’union de deux intervalles. unpublished manuscript, 1993. 2.3

[7] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
3.1

[8] Nils Bruin, Bjorn Poonen, and Michael Stoll. Generalized explicit descent and its application to
curves of genus 3. Forum Math. Sigma, 4:e6, 80, 2016. 3.3

[9] Nils Bruin and Michael Stoll. Two-cover descent on hyperelliptic curves. Math. Comp.,
78(268):2347–2370, 2009. 1.3

[10] Nils Bruin and Michael Stoll. The Mordell-Weil sieve: proving non-existence of rational points on
curves. LMS J. Comput. Math., 13:272–306, 2010. 3.3
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